
Using C/C++ and Fortran together: 

This tutorial covers mixing C/C++ and FORTRAN together, allowing C/C++ to call 

FORTRAN functions and FORTRAN to call C/C++ functions. Integrating C/C++ and 

FORTRAN into a single executable relies upon knowing how to interface the 

function calls, argument list and global data structures so the symbols match in the 

object code during linking. FORTRAN and C/C++ interoperability is sucessful when 

datatypes are matched appropriately, arguments passed correctly, the code linked 

properly and the executable runs without error. 
 

 

Comparison of FORTRAN and C/C++ datatypes: 

FORTRAN C/C++ 

byte unsigned char 

integer*2 short int 

integer long int or int 

integer 
iabc(2,3) 

int iabc[3][2]; 

logical long int or int 

logical*1 bool 
(C++, One byte) 

real float 

real*8 double 

real*16 long double 

complex 
struct{float realnum; float 
imagnum;} 

double complex struct{double dr; double di;} 

character*6 abc char abc[6]; 

character*6 
abc(4) 

char abc[4][6]; 

parameter #define PARAMETER value 

This table shows the appropriate types to use for 
FORTRAN and C/C++ interoperability. 

 

 

FORTRAN and C Arrays: 

http://buzzeddriving.adcouncil.org/


Order of multi dimensional arrays in C/C++ is the opposite of FORTRAN. 

Native FORTRAN layout (collumn-major order): INTEGER A(2,3) 

a(1,1) a(2,1) a(1,2) a(2,2) a(1,3) a(2,3) 

Or INTEGER A(2,2,2) 

a(1,1,1) a(2,1,1) a(1,2,1) a(2,2,1) a(2,2,1) a(1,1,2) a(2,1,2 a(1,2,2) a(2,2,2) 

Native C layout (row-major order) is NOT equivalent to the FORTRAN layout: int 
a[2][3]; 

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2] 

Thus: 

 Equivalent multidimension arrays: 
o FORTRAN 77: INTEGER I(2,3,4) 
o FORTRAN 90: INTEGER, DIMENSION(2,3,4) :: I 
o C: int i[4][3][2]; 

 Accessing a FORTRAN array in C:  
Native FORTRAN: 

   INTEGER   I,J,NI,NJ 

   PARAMETER(NI=2,NJ=3) 

   INTEGER   B(NI,NJ)                same as B(2,3) 

 

   DO J = 1, NJ                      loop to 3 

       DO I = 1, NI                  loop to 2 

           PRINT 10, I, J, B(I,J) 

10         FORMAT(‘B(', I1, ',', I1, ') =', I2) 

       END DO 

   END DO 

               

  
Native C: 

    int a[3][2]) 

    int i, j; 

  

    for (i = 0; i < 3; i++) 

        for (j = 0; j < 2; j++) 

            printf(“a[%d][%d] = %d\n", i, j, a[i][j]); 

               

 C array a[3][2] memory layout: 

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1] 



 In FORTRAN 90, also check out the "RESHAPE" directive. 
 It is best not to re-dimension multi dimensional arrays within a function. Pass 

array size "n" and declare array as x[n][]; 

 

Linking FORTRAN And C Subroutines: 

Fortran subroutines are the equivalent of "C" functions returning "(void)". 

Note: The entry point names for some FORTRAN compilers have an underscore 
appended to the name. This is also true for common block/structure names as 
shown above.  

FORTRAN C 

CALL SUBRA( ... ) subra_( ... ) 

The f77 comiler flags "-fno-underscore" and "-fno-second-underscore" will alter the 
default naming in the object code and thus affect linking. One may view the object 
file with the command nm (i.e.: nm file.o). 

Note: The case in FORTRAN is NOT preserved and is represented in lower case in 
the object file. The g77 compiler option "-fsource-case-lower" is default. GNU g77 
FORTRAN can be case sensitive with the compile option "-fsource-case-preserve". 

NOTE: When debugging with GDB, the Fortran subroutines must be referenced with 
names as they appear in the symbol table. This is the same as the "C" 
representation. Thus when setting a break point at the Fortran subroutine subra(), 
issue the comand "break subra_". 

Man pages: 

 nm - list symbols from object files 
 g77/f77 

 

Function Arguments: 

All arguments in FORTRAN are passed by reference and not by value. Thus C must 
pass FORTRAN arguments as a pointer. 

FORTRAN C 

http://man.yolinux.com/cgi-bin/man2html?cgi_command=nm
http://man.yolinux.com/cgi-bin/man2html?cgi_command=g77


call subra( i, x) subra_( int *i, float *x) 

Character variables: 

 Linux and GNU compilers: When passing character strings, the length must 
follow as separate arguments which are passed by value. 

FORTRAN C 

call subra( string_a, string_b) 

len_a = strlen(string_a);  
len_b = strlen(string_a);  
subra_( char *string_a, len_a, char *string_b, len_b) 

 I have also seen the passing of a data structure containing two elements, the 
character string and an integer storing the length. This is common with 
databases such as Oracle. 

 Classic AT&T UNIX:  
When passing character strings, the length must be appended as separate 
arguments which are passed by value. 

FORTRAN C 

call subra( string_a, string_b) subra_( char *string_a, char *string_b, len_a, len_b) 

C expects strings to be null-terminated. Thus character strings from FORTRAN 
which are passed back to "C" should be null terminated with CHAR(0) 

CHARACTER(LEN=32) :: sample_string = "This is a sample"//CHAR(0) 

 

or 

 

CALL SUBRA ('A string'//CHAR(0)) 

               

 

Alternate Returns: 

FORTRAN C 

call sub(a,b,c,*,*) 

return 1 

end 

int sub_(int *a,int *b,int *c) 

{ 

   return(1) 

} 

goto(1, 2, 3), sub() if( sub() ) goto ERRS; 



Note: When using alternate returns to turn on/off an intlevel by returning a 1/0 you 
must use a FORTRAN wrapper to perform this function on the CSC Norwich 
mainframe. This is because the C compiler is old. 

  Buffering output: Your machine may be configured where the output buffering defaults for 

FORTRAN and C may be configured the same or differently. C output may be buffered buffered while 

FORTRAN may not. If so, execute a function initialization task to unbuffer C otherwise print statements 

for C will be output out of order and at the end. 

          #include <stdio.h> 

 

          void ersetb(void){ 

              setbuf(stdout,NULL); /* set output to unbuffered */ 

          } 

 

Common Blocks: 

Fortran common block and global C/C++ extern structs of same name are equivalent. Never use un-

named common blocks! Reference variables in same order, same type and with the same name for both 

C and FORTRAN. Character data is aligned on word boundaries. 

          FORTRAN: 

               DOUBLE PRECISION X 

               INTEGER A, B, C 

               COMMON/ABC/ X, A, B, C 

  

          C: 

               extern struct{ 

                   double x; 

                   int a, b, c; 

               } abc_; 

  

          C++: 

             extern "C" { 

               extern struct{ 

                   double x; 

                   int a, b, c; 

               } abc_; 

             } 

  

               

Note: use of extern requires that the common block be referenced first by FORTRAN. If referenced first 

by C then drop the extern. The extern statement states that it is trying to reference memory which has 

already been set aside elsewhere. 

[Potential Pitfall]: Byte alignment can be a source of data corruption if memory boundaries between 

FORTRAN and C/C++ are different. Each language may also align structure data differently. One must 

preserver the alignment of memory between the C/C++ "struct" and FORTRAN "common block" by 

ordering the variables in the exact same order and exactly matching the size of each variable. It is best to 



order the variables from the largest word size down to the smallest. Start with "double" followed by 

"float" and "int". Bool and byte aligned data should be listed last. 

          FORTRAN: 

               INTEGER A, B, C 

               DOUBLE PRECISION D, E, F 

               LOGICAL*1  FLAG 

               COMMON/ABC/ A, D, FLAG, B, E 

  

          C: 

               extern struct{ 

                   int a; 

                   double d; 

                   bool flag; 

                   int b; 

                   double e; 

               } abc_; 

  

          C++: 

             extern "C" { 

               extern struct{ 

                   int a; 

                   double d; 

                   bool flag; 

                   int b; 

                   double e; 

               } abc_; 

             } 

               

Using GDB to examine alignment: 

 Set a breakpoint in the C/C++ section of code which has visibility to the struct. 

 While in a C/C++ section of code: 

(gdb) print &abc_.b  
$3 = (int *) 0x5013e8 

 Set a breakpoint in the FORTRAN section of code which has visibility to the common block. 

 While in a FORTRAN section of code: 

(gdb) print &b  
$2 = (PTR TO -> ( integer )) 0x5013e8 

This will print the hex memory address of the variable as C/C++ and FORTRAN view the variable. The 

hex address should be the same for both. If not, the data will be passed improperly. 

Forcing alignment with compiler arguments: Mixing Intel FORTRAN compiler and GNU g++: use 

the following compiler flags to force a common memory alignment and padding to achieve a common 

double word alignment of variables: 

 Intel FORTRAN: -warn alignments -align all -align rec8byte 



 Intel C/C++: -Zp8 

 GNU g++: -Wpadded -Wpacked -malign-double -mpreferred-stack-boundary=8  

Example warning: warning: padding struct size to alignment boundary 

 GNU g77: -malign-double 

 

Example: 

FORTRAN program calling a C function: 

testF.f testC.c 

      program test 

 

      integer ii, jj, kk 

      common/ijk/ ii, jj, kk 

      real*8  ff 

      character*32 cc 

 

      ii = 2 

      jj = 3 

      kk = 4 

      ff = 9.0567 

      cc = 'Example of a character 

string' 

 

      write(6,10) ii, ff 

10    format('ii= ',i2,' ff= ',f10.4) 

 

      call abc(ii) 

 

      write(6,20) ii 

20    format('ii= ',i2) 

 

      write(6,30) ii, jj, kk 

 

      call doubleIJK(cc) 

 

      write(6,30) ii, jj, kk 

30    format('ii= ',i2,' jj= ', i2, ' kk= 

', i2) 

 

      write(6, 40) cc 

40    format(a32) 

 

      stop 

      end 

 

      subroutine abc(jj) 

      jj = jj * 2 

      return 

      end 

#include <stdio.h> 

 

extern struct 

{ 

   int ii, jj, kk; 

} ijk_; 

 

int doubleijk_(char *cc, int ll) 

{ 

   cc[ll--] = '\0';  // NULL terminate 

the string 

 

   printf("From doubleIJK: %s\n",cc); 

 

   ijk_.ii *=2; 

   ijk_.jj *=2; 

   ijk_.kk *=2; 

 

   return(1); 

} 



Compile: 

 f77 -c testF.f 
 gcc -c testC.c 
 f77 -o test testF.o testC.o 

Note: If there is use of C/C++ standard libraries you may have to include the following linking 

arguments: -lc or -lstdc++ 

Run: ./test 

ii=  2 ff=     9.0567 

ii=  4 

ii=  4 jj=  3 kk=  4 

From doubleIJK: Example of a character string 

ii=  8 jj=  6 kk=  8 

Example of a character string 

[Potential Pitfall]: If one does not terminate the string with NULL, the default with the new compilers 

(fort77 1.15 and gcc 4.5.2) and linker is to terminate the string with '\004' which is EOT (end of 

transmission). Previously this was not required but it is now. This code (cc[ll--] = '\0';) replaces 

the string terminating EOT character with a NULL. 

 

C++ calling a FORTRAN function: 

testC.cpp testF.f 

#include <iostream> 

 

using namespace std; 

 

extern"C" { 

void fortfunc_(int *ii, float *ff); 

} 

 

main() 

{ 

 

   int ii=5; 

   float ff=5.5; 

 

   fortfunc_(&ii, &ff); 

 

   return 0; 

} 

      subroutine fortfunc(ii,ff) 

      integer ii 

      real*4  ff 

 

      write(6,100) ii, ff 

 100  format('ii=',i2,' ff=',f6.3) 

 

      return 

      end 

Compile: 

 f77 -c testF.f 



 g++ -c testC.cpp 
 g++ -o test testF.o testC.o -lg2c 

Run: ./test 

ii= 5 ff= 5.500 

 

File I/O: 

FORTRAN unit numbers can not be shared with "C" and "C" file pointers can not be used by 

FORTRAN. Pass data to a function (pick one language) which does the I/O for you. Use this function by 

both languages. 

 

VAX Extensions: 

The GNU FORTRAN compilers have only ported a small subset of VAX extensions. The vast majority 

will require a clever re-write. 

VAX Variable Format Expressions: 

VAX expression Ported to GNU FORTRAN 

      integer*4 ivar(3), nfor 

      nfor=3 

      ... 

  

      write(6,100) (ivar(i),  

i=1,nfor) 

  100 format(<nfor>I3) 

      do 20 i=1,nfor 

         write(6,200) ivar(i) 

  200    format(I3,$)  !! Supress carriage 

return 

   20 continue 

 

      write(6,400)     !! Write carriage 

return 

  400 format() 

 

VAX intrinsic functions: 

Many are not supported in GNU FORTRAN and require the creation of an equivalent library written in 

"C". 

Return type VAX FORTRAN intrinsic function Argument type 

Integer*4 NINT(arg) 
JNINT(arg) 

Real*4 

Integer*4 IDNINT(arg) 
JIDNINT(arg) 

Real*8 

Integer*2 ININT(arg) Real*4 

Integer*8 KNINT(arg) Real*4 

Integer*2 IIDNNT(arg) Real*8 



Integer*8 KIDNNT(arg) Real*8 

Integer*2 IIQNNT(arg) Real*16 

Integer*4 IQNINT(arg) 
JIQNNT(arg) 

Real*16 

Integer*8 KIQNNT(arg) Real*16 

Example: inint.c 

short int inint_(float *rval) 

{ 

   if(*rval < 0.0) 

      return (*rval - 0.5); 

   else 

      return (*rval + 0.5); 

} 

 gcc -c inint.c 
 gcc -c idnint.c 

 ... 

 Create library: ar -cvq libvax.a inint.o idnint.o ... 

 

C++: 

When mixing Fortran with C++, name mangling must be prevented. 

          #ifdef __cplusplus 

             extern"C" { 

          #endif 

          . 

          . 

          place declarations here 

          . 

          . 

          #ifdef __cplusplus 

          } 

          #endif 

         

For more on C++ name mangling, see the YoLinux.com C++ name mangling discussion. 

 

The Intel FORTRAN compiler: 

The Intel FORTRAN compiler has become a popular FORTRAN compiler for Linux as it supports 

many of the FORTRAN extensions supported by the Compaq (old DEC vax) and SGI FORTRAN 

compilers. (i.e. "structure", "record", "external", "encode", "decode", "find", "virtual", "pointer", 

"union", various intr8insic functions, I/O directives, ...) It links with object code generated by GNU 

gcc/g++ compilers as well as their own Intel C/C++ compilers. 

http://www.yolinux.com/TUTORIALS/LinuxTutorialC++.html#CANDCPP
http://software.intel.com/en-us/articles/fortran-compilers/


Installation: (as root) 

 mkdir /opt/intel 
 cd /opt/intel 

 move Intel Fortram compiler tar ball to this directory. 
 tar xzf 1_fc_c_9.0.033_ia32.tar.gz 
 cd 1_fc_c_9.0.033/ 

 ./install.sh  

1 : Install  

2 : provide name of an existing license file.  

License file path :  

/path-to-license-file/commercial_for_1_F2WC-5FDZV87R.lic  

(file copied to /opt/intel/licenses)  

1 (typical installation)  

Type "accept" to agree to license terms.  

Accept default location: /opt/intel/fc/9.0  

Accept default location: /opt/intel/idb/9.0  

x : Installation done 

Compiler use and user configurations: 

File: $HOME/.bashrc 

.. 

... 

 

# 

# Intel Compiler 

# 

 

# FlexLM license server 

export INTEL_LICENSE_FILE=28518@license-server 

 

# Support for Intel FORTRAN compiler 

if [ -f /opt/intel/fc/9.0/bin/ifortvars.sh ]; 

then 

   source /opt/intel/fc/9.0/bin/ifortvars.sh 

fi 

 

# Support for Intel C/C++ compiler 

if [ -f /opt/intel/cc/9.0/bin/iccvars.sh ]; 

then 

   source /opt/intel/cc/9.0/bin/iccvars.sh 

fi 

 

# Support for Intel Debugger 

if [ -f /opt/intel/cc/9.0/bin/idbvars.sh ]; 

then 

   source /opt/intel/cc/9.0/bin/idbvars.sh 

fi 

 



... 

... 

 

export LD_LIBRARY_PATH 

export PATH 

                   

File: Makefile (snipet) 

F77=/opt/intel/fc/9.0/bin/ifort 

F77FLAGS= -extend_source -fpp -f77rtl -intconstant -ftz -pad-source -sox \ 

          -lowercase -warn alignments -cxxlibgcc 

CXX=g++ 

CPPFLAGS=-Wpadded -Wpacked 

LDFLAGS=-L/opt/intel/fc/9.0/lib -lifport -lifcore -limf -Wabi -Wcast-align 

DEBUG=-g 

 

OBJS=file1.o file2.o 

 

cpp-exe: $(OBJS) 

 $(CC) $(LDFLAGS) -o name-of-exe $(OBJS) 

 

.cpp.o: 

     $(CXX) -c $(DEBUG) $(CPPFLAGS) $<  

 

.f.o: 

     $(F77) -c $(DEBUG) $(F77FLAGS) $<  

Intel compiler directives: 

Directive Description 

-extend_source Length of line in source file allows for greater than 72 characters. 

-vax VAX FORTRAN runtime behavior. Changes read behavior. I never use 
this. 

-f77rtl FORTRAN 77 runtime behavior. 

-fpp Run preprocessor. i.e. handles #define and #ifdef macros. 

-intconstant Use FORTRAN 77 semantics to determine the kind of parameter for 
integer constants. 

-ftz Flushes denormal results to zero. 

-pad-source Specifies that fixed-form source records shorter than the statement field 
width should be padded with spacs (on the right) to the end of the field. 

-lowercase All function names are represented as lower case symbols. 

-sox Store compiler options and version in the executable. 

-warn 
alignments 

Warning if COMMON block records require padding for alignment. 

-align all Will get rid of warning: "Because of COMMON, the alignment of object 
is inconsistent with its type [variable-name] 
This requires a matching alignment for all code which links with this, C, 



C++ or FORTAN. 

Use GNU g++ or Intel C++ compiler to compile and link with main():  
g++ -o name-of-exe main_prog.cpp file1.o file2.o -L/opt/intel/fc/9.0/lib -lifport -

lifcore -limf -Wabi -Wcast-align 

Using ddd as a front-end for the Intel debugger: 

ddd --debugger "/opt/intel/idb/9.0/bin/idb -gdb" exe-file 

[Potential Pitfall]: I found that I could not install the Intel FORTRAN compiler from an NFS mounted 

drive. I had to copy the Intel installation files to a local drive and install from there. 

Documentation: /opt/intel/cc/9.0/doc/main_for/mergedProjects/bldaps_for/ 

 

file://opt/intel/cc/9.0/doc/main_for/mergedProjects/bldaps_for/

